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Nonstationary stochastic resonance in a single neuronlike system
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Stochastic resonance holds much promise for the detection of weak signals in the presence of relatively loud
noise. Following the discovery of nondynamical and of aperiodic stochastic resonance, it was recently shown
that the phenomenon can manifest itself even in the presence of nonstationary signals. This was found in a
composite system of differentiated trigger mechanisms mounted in parallel, which suggests that it could be
realized in some elementary neural networks or nonlinear electronic circuits. Here, we find that even an
individual trigger system may be able to detect weak nonstationary signals using stochastic resonance. The
very simple modification to the trigger mechanism that makes this possible is reminiscent of some aspects of
actual neuron physics. Stochastic resonance may thus become relevant to more types of biological or electronic
systems injected with an ever broader class of realistic sigi#1€63-651X%98)05710-9
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One of the remarkable aspects of stochastic resorfdrce deterministic signal itself never exceeds the threshold, and
10] is the possibility of enabling the detection of a weak hence would not be detectable if it were the only input.
signal by adding noise to the input. An important recent de- The injected deterministic signal is markedly nonstation-
velopment in this field—the discovery of nondynamical sto-ary, while always remaining subthreshold. Hence, no re-
chastic resonandd.1-13—is that the phenomenon can oc- SPonse would result in Figs. 2 in the absence of noise. In the

cur independently of angtetailsof nonlinear dynamics in the Raw data: nonstationary subthreshold signal

system, although the nonlinearity itself is essential for the hidden in random noise
phenomenon to occur. Thus, stochastic resonance was sho\
to arise in extremely simple trigger systems. Equally impor-  2°[._ R .

tant was the discovery of aperiodic stochastic resonanc
[14-23 that is, the realization that the signals made detect
able by the addition of noise need not be periodic. This
opened the door for investigating the occurrence of the phe
nomenon under a broader set of realistic conditions. Mort
recently still, a study originally motivated by new prospects
in gravitational wave detectidr24—26 showed that stochas-
tic resonance can manifest itself not only when the signal i
aperiodic, but also when it is markedly nonstationf2y].
This could potentially extend the relevance of stochastic
resonance to a larger class of biological and electronic appli
cations. The system that was shown to exhibit nonstationar
stochastic resonance was a simple, nondynamical, multilevt

(a) -

10

trigger, more precisely, a summing network of differentiated =~ sfF-———=—=—=———==—--———-———-———-—- Threshold
single-threshold systems. Here, we report that nonstationai /\/\

stochastic resonance can alsq manifest |t§elf ina sy;tem i 53 OWG o = Time 1T
elementary as an individual, single-level trigger, provided &

very simple modification is applied to the trigger mechanism.
This modified single-threshold system is reminiscent of cer
tain aspects of neuronal biophysics, and we shall briefly al
lude to that possible connection further below.

. Consider then the single-threshold trigger mechanism that g 1. (@) The input consists of a subthreshold deterministic
is at work in Figs. 1 and 2. Starting with Fig(al, it shows  sjgnal[Fig. 1(b)] buried in random noise. Here as throughout the
the input consisting of a subthreshold deterministic signakimulations, the total integration time is normalized to dis¢ The
[see Fig. )] buried in loud(i.e., above-threshojdandom  deterministic signal is markedly nonstationary, while always re-
noise. The latter is taken to be a low-pass filtered, zero-meamaining subthreshold. No response would result in Figs. 2 without
Gaussian white noise. The total input frequently exceeds thihe presence of noise. The same deterministic signal will be used
threshold, resulting in the firings of Figs. 2, although thethroughout the following simulations.

(b) -10
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Response of unmodified trigger system o Trigger system with bin averaging
» Trigger system with running window

o Unmodified trigger system
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FIG. 3. This shows the correlation measure of EL. as a

function of B, the size of the averaging bin or of the running win-
- dow. The very high correlations achieved for certain value8 of
0.8 - e =—- confirm the visual detection of the deterministic sigifdg. 1(b)] in
- the responses of Figs(l20).
0.6 - - _ —_
- — - - subthreshold signalFigs. 3 and #that permits one to say
0.4 - that the addition of noise has allowed the detection of an
~— - otherwise undetectable signal. The correlation measure used
0.2 = - in these simulations is the value of the normalized correla-
_—— tion function at zero lag:
(b) 0.2 0.4 0.6 0.8 T Time 1T
Response of modified trigger system: running window o ((R(t) = (R(1))(S(t) —(S(1)))) W
(RO=(RONAMH(S(H) —(S(1)))?)?
1
where S(t) is the deterministic input signaR(t) is the re-
0.8 sponse of the system to the tofalgnal plus noisestimulus
and( ) indicates time averaging.
0.6 Note that, if the signal has more high-frequency structure
than shown here, that could be dealt with by first applying
0.4 the techniques of aperiodic stochastic resondide-23 to
the “straightened out”(low-frequency filtered version of
0.2
* Trigger system with bin averaging
= Trigger system with running window
(©) 0.2 0.4 0.6 0.8 ;7 Time T geersy 9
C
FIG. 2. (8) Response of the unmodified trigger system, showing ¢orrelation 1
little visible structure and correlating poorly to the hidden determin- coefficient Fra,
istic signal.(b) This is the response from an individual trigger sys- 0.8] & *en .
tem that averages its raw pulse trgihe firings of Fig. 2a)] every ; ‘. : .
time interval B. Equivalently, this would be the response from a 0.6 LI
system that, after every time intenfg| fires a pulse with a height : ‘e,
proportional to the number of times durigthat the threshold has 0.47y ) : : ..
been exceededc) The single-trigger system has been modified e o
here in keeping with some basic facts about internal neuron physic: 0.2 ¢
(see text A Gaussian running window of widtB is applied to the
raw pulse train of Fig. @). For most values oB, the response is 5 n A 5 o O
strongly correlated to the hidden deterministic sidiseke Fig. 1b)].
rms of noise

presence of noise, not only does one obtain a response, but FIG. 4. The correlation coefficierisee caption of Fig. 3as a
the hidden deterministic signal can be easily detected in thatinction of o, the rms of the noise, which is divided here by the
response, as can be seen most clearly from K. B is the  threshold height of Figs.(&,b. The system clearly displays sto-
strong correlation of the noise-induced response with thehastic resonance.
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the signal. In the present paper, we focus on the nonstatiommitter substances through dendritic synapses and the associ-
ary aspect of the signal, which is essentially a low-frequencyated growth of the polarizing potentials involved in the
characteristic. neural firings. In Fig. &), the system has been modified to
The trigger system, in its simplest form, is sensitive onlyreflect in the simplest way possible the basic aspects of neu-
to whether(not to by how muchthe threshold is exceeded. ron physics just mentioned: An effective running window,
Hence, one does not expect that a single-trigger systet@ken here to be a Gaussian of widhis applied to the raw
would help efficiently with the detection of a strongly non- Pulse train of Fig. 2a) [i.e., the actual response is the con-
stationary signal. This is indeed confirmed in Figa)3 vc_>|ut|on of the blind response of Fig(& with a Gaussian of
where the response of the unmodified trigger system i idth B]. For most values 0B, the response of this modi-

shown to have little visible structure and to correlate poorly!€d trigger is extremely well correlated to the hidden deter-
with the hidden deterministic signal. ministic signal(see Fig. 3. Simulations show that the results

This eventual inability of the simplest single-trigger sys- remain virtually unchanged for most reasonable choices of a

tem to help efficiently with the detection of a strongly non- running window. This implies that if a given type of neuron

stationary signal can sometimes be remedied if several Su'iﬁezcgusgurgtlijgr?stoth?alsgtﬁeﬂ::%uﬁ)get?eo?L?snogctiljjg?cfshtgl((jj ?gr
triggers are available and if their outputs can be summe ! P

- L P t other types of neurons.
[27]. That not withstanding, it is shown in Figs(kc) that mos o .
even one individual trigger can help achieve detection, pro- To summarize, it can be seen from Figé)2and 4c) that

vided that either one of the two following straightforward e_Iementgry, experimentally motivated modi_fic_ations Of. the
modifications can be made: single-trigger system can produce a dramatic increase in the

(1) The system fires only every time interval equalo efficiency of signal detection through stochastic resonance.

and the height of the pulse fired is proportional to the numbe;rhe |mpl|cat|on_|s that even one |n.d|V|duaI neuron, or an
of times the threshold has been crossed duBagEquiva- analogous_ nonlinear eleqtronlc device, could h_elp ach'leve
lently, the system outputs after every time iﬁter\BaIthe the; detec_tlon of nonstationary, subthreshold signals in a
average of the “blind” response of Fig(8®. This situation noisy environment.

can easily arise when, e.g., the response of a systayis Coming in the wake of the remarkable leaps in the field
y » €0, P y brought about by nondynamic and aperiodic stochastic reso-

choice or by constraintlower than the input sampling rate. . o
: . . .nance, and following the recently suggested generalization to
Indeed, when the system is one under biological or electroni¢

control, efficiency dictates that the output firing rateould Mmarkedly nonstationary cases, the possibility seems to be-

b . X : come ever more real that some of the simplest systems con-
e slower than the input sampling rate. Figuréb)2shows : .
. e . . ceivable may be able to detect weak signals of an almost

that this modification can improve even visually the correla—arbitrary nature
tion with the hidden deterministic signal; this improvement '
is confirmed more quantitatively in Fig. 3. | am grateful to L.M. Ward for helping me become better

(2) The internal dynamics of the system effects the re-acquainted with neural processes. | am also grateful to W.G.
sponse in a way that can be modeled by a convolution winUnruh for being the first to bring the phenomenon of sto-
dow running through the pulsed “blind” respondée., chastic resonance to my attention, and to B. Bergersen for
through Fig. 2a)]. This is indeed expected to be the case ifhelping me familiarize myself with previous literature on
the system simulated is, e.g., a cortical or a sensory neurastochastic resonance. | have also benefited from extensive
[16,28—32. The minimal lapse between two neural firings logistical support by the General Relativity & Cosmology
can be as small as a few milliseconds, but there is an addGroup in the Department of Physics, University of British
tional, longer time scale effecting the response, a time scal€olumbia, by the Department of Interdisciplinary Studies at
that can vary from about 10 ms for certain cortical neuronslUBC, and by T.E. Vassar during the preparation of this pa-
to about 100 ms for sensory neurons. This effective integraper. This work was supported by the PWIAS of UBC and
tion time reflects the characteristics of the flow of ionic trans-NSERC of Canada.
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